2020
DOI: 10.31294/p.v22i2.8906
|View full text |Cite
|
Sign up to set email alerts
|

Eksperimen Pengenalan Wajah dengan fitur Indoor Positioning System menggunakan Algoritma CNN

Abstract: Facial recognition work combined with the facial owner's position estimation feature can be utilized in various everyday applications such as face attendance with position detection. Based on this, this study offers a system testing experiment that can be run with facial recognition features and an Indoor Positioning System (IPS) to automatically check the location of the owner of the face. Recently, deep learning algorithms are the most popular method in the world of artificial intelligence. Currently, the De… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
5

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(11 citation statements)
references
References 11 publications
0
6
0
5
Order By: Relevance
“…Agar pengujian dilakukan dengan benar, diperlukan operasionalisasi variabel untuk mengidentifikasi indikator, dimensi dan skala variabel dalam penelitian. Variabel bebas dan terikat merupakan variabel yang digunakan pada penelitian ini (Fachruddin et al, 2020;Hartiwi et al, 2020;Indah Handaruwati, 2021;Monica & Marlius, 2023): a. Variabel bebas (Idependent variable) Variabel bebas merupakan variabel yang jadi sebab terjadinya atau mempengaruhi yang muncul dari variabel terikat.…”
Section: Operasionalisasi Variabelunclassified
“…Agar pengujian dilakukan dengan benar, diperlukan operasionalisasi variabel untuk mengidentifikasi indikator, dimensi dan skala variabel dalam penelitian. Variabel bebas dan terikat merupakan variabel yang digunakan pada penelitian ini (Fachruddin et al, 2020;Hartiwi et al, 2020;Indah Handaruwati, 2021;Monica & Marlius, 2023): a. Variabel bebas (Idependent variable) Variabel bebas merupakan variabel yang jadi sebab terjadinya atau mempengaruhi yang muncul dari variabel terikat.…”
Section: Operasionalisasi Variabelunclassified
“…The reliability of computer vision algorithms is assessed using a diverse and representative test data set. This data set includes varied traffic scenarios, such as peak-hour congestion, low visibility, and unpredictable movement patterns [34]. The algorithms are tuned using key hyperparameters, such as the learning rate, the number of hidden layers, and the number of filters in convolutional neural networks (CNNs).…”
Section: Validation and Reliabilitymentioning
confidence: 99%
“…A priori algorithms can be used to assist in the decision-making management side (Assegaff, Rasywir, and Pratama 2023;Dodo Zaenal Abidin et al 2019;Fachruddin et al 2020;Hartiwi et al 2020). The a priori algorithm is known as an iterative approach level-wise search, where k-itemset is used to explore or discover (k+1)-itemset.…”
Section: Literature Reviewmentioning
confidence: 99%