Diseña 2021
DOI: 10.7764/disena.19.article.1
|View full text |Cite
|
Sign up to set email alerts
|

El potencial de las redes basadas en la API Google Vision para el estudio de imágenes digitales nativas

Abstract: En este artículo presentamos los potencia­les de las redes basadas en la API Google Vision para el estudio de las imágenes en lí­nea, abordando tres modalidades importan­tes como parte de una metodología visual crítica: el contenido de la propia imagen, su forma específica de “audienciación” a través de referencias web (o metadatos de la ima­gen) y los sitios de circulación de la imagen. En primer lugar, definimos conceptual y técnicamente diferentes redes construidas a partir de ciertas características de vis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(7 citation statements)
references
References 20 publications
0
7
0
Order By: Relevance
“…Comparable to a reverse image search, the feature processes the information across images and associated text using metadata embedded in the images' current online locations. By leveraging the capabilities of the Google Knowledge Graph (Burkhardt and Rogers, 2022;Omena et al, 2021), the method provides contextual clues to each of the images in terms of their literal content (e.g. 'forehead', 'clothing', 'muscle'), their associated web locations (e.g.…”
Section: Methods: Online Images Memeification and The Value Of Outliersmentioning
confidence: 99%
“…Comparable to a reverse image search, the feature processes the information across images and associated text using metadata embedded in the images' current online locations. By leveraging the capabilities of the Google Knowledge Graph (Burkhardt and Rogers, 2022;Omena et al, 2021), the method provides contextual clues to each of the images in terms of their literal content (e.g. 'forehead', 'clothing', 'muscle'), their associated web locations (e.g.…”
Section: Methods: Online Images Memeification and The Value Of Outliersmentioning
confidence: 99%
“…In 2012, the Yale Computer Graphics Group developed a plugin for the then newly born network visualisation and exploration software Gephi (Bastian, Heymann and Jacomy, 2009). This plugin -ImagePreview-has opened up new horizons for visual methods, facilitating, for example, network vision analysis (see Omena et al, 2021) and influencing the development of other research software, like Memespector Graphical User Interface (Chao, 2021).…”
Section: Mapping Visual Methodsmentioning
confidence: 99%
“…This method was adapted from Omena et al (2020, 2021) which utilizes computer vision algorithm (i.e., Google Vision API) in the classification and organization of large social media image corpora. The goal of this method is to discover visual discourses by identifying repeated use of similar visuals in the corpus, which is indicated by clusters of similar images in an image-label bi-partite network.…”
Section: Methodsmentioning
confidence: 99%