Lizardite rich peridotite has never been used to prepare ceramic specimens, especially in Morocco. For this raison, potential use of naturally abundant lazirditic material from the Rif domain (NW morocco), as a supply for ceramic industry, has been evaluated. The effects of lizardite addition to magnesite and dolomite mixtures on the thermomechanical properties of the calcined ceramics were also detailed. To achieve this target, natural lizardite, magnesite and dolomite samples were collected in ultrabasic Beni Bousra massif. Those raw samples were used for the synthesis of a forsterite-monticellite rich ceramics. Both raw and sintered samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and fourier transform infrared (FTIR). Main physical and mechanical properties were assessed and correlated to their respective microstructural changes. The obtained results showed that both magnesite and dolomite were mainly composed of MgCO3 and CaCO3. In contrast, lizardite sample showed high amounts of silica, magnesia and iron oxide. Technological tests indicated that the prepared mixtures had increased flexural strengths. An increased amount of lizardite in the initial mixtures enhanced mechanical properties of the prepared ceramic specimens. The same data showed that lizardite has led to a decrease in linear shrinkage during calcination and subsequently, the production of ceramics with the required technological properties. Thus, the preparation of lizardite-based ceramics from the raw material deposits of the Rif area, Morocco, is technically feasible, economically justifiable and socially desirable due to the contribution to the economic growth of the raw materials sector, especially ceramic industry.