The minimum achievable droplet sizes created by a simple in-line Kenics Static Mixer (KSM) under various flow rates and mixing time in oil in water (O/W) emulsion were investigated through turbulent flow system. First, a Computational Fluid Dynamics (CFD) method is utilized to predict final droplet sizes in different Reynolds number. Then, an experimental setup was used in order to validate CFD results. The droplet size was monitored using Dynamic Light Scattering (DLS) technique by means of a Malvern zetasizer machine. Breakup/coalescence of droplets under constant volume fractions of oil was studied when flow rate was varied from 36.7 to 85 ml/s. Results showed that droplet size distribution highly depends on flow rate and mixing time. Droplets break more easily and faster at higher flow rates. The results proved that the obtaining small enough droplets using static mixer in less than 40 minutes at the flow rates above 36.7 ml/s at moderate concentration of oil volume fraction.