High‐capacity cathodes and anodes in energy storage area are required for delivering high energy density due to the ever‐increasing demands in the applications of electric vehicles and power grids, which suffer from significant safety concerns and poor cycling stability at the current stage. All‐solid‐state lithium batteries (ASSLBs) have been considered to be particularly promising within the new generation of energy storage, owing to the superiority of safety, wide potential window, and long cycling life. As the key component in ASSLBs, individual solid electrolytes that can meet practical application standards are very rare due to poor performance. To the present day, numerous research efforts have been expended to find applicable solid‐state electrolytes and tremendous progress has been achieved, especially for garnet‐type solid electrolytes. Nevertheless, the garnet‐type solid electrolyte is still facing some crucial dilemmas. Hence, the issues of garnet electrolytes' ionic conductivity, the interfaces between electrodes and garnet solid electrolytes, and application of theoretical calculation on garnet electrolytes are focuses in this review. Furthermore, prospective developments and alternative approaches to the issues are presented, with an aim to improve understanding of garnet electrolytes and promote their practical applications in solid‐state batteries.