In this study, our objective is to investigate the anisotropic deformation behavior and the indentation size effect (ISE) of monocrystalline barium fluoride (BaF2) using nanoindentation experiments with a diamond Berkovich indenter. BaF2 is known for its anisotropy, which results in significant variations in its mechanical properties. This anisotropy poses challenges in achieving high processing quality in ultra-precision machining. Through our experiments, we observed numerous pop-in events in the loadâdisplacement curves, indicating the occurrence of plastic deformation in BaF2 crystals, specifically in the (100), (110), and (111) orientations; these pop-in events were observed as the indentation depth increased to 56.9 nm, 58.2 nm, and 57.8 nm, respectively. The hardnessâdisplacement and elastic modulusâdisplacement curves were obtained from the tests exhibiting the ISE. The nanoindentation hardness of BaF2 is found to be highly dependent on its crystallographic orientation. Similarly, for BaF2 in the (100) orientation, the range is from 2.43 ± 0.74 and 1.24 ± 0.12 GPa. For BaF2 in the (110) orientation, the values range from 2.15 ± 0.66 to 1.18 ± 0.15 GPa. For BaF2 in the (111) orientation, the values range from 2.12 ± 0.53 GPa to 1.19 ± 0.12 GPa. These results highlight the significant influence of crystallographic orientation on the mechanical properties of BaF2. To better understand the ISE, we employed several models including Meyerâs law, the NixâGao model, the proportional specimen resistance (PSR) model, and the modified PSR (mPSR) model, and compared them with our experimental results. Among these models, the mPSR model demonstrated the best level of correlation (R2>0.9999) with the experimental measurements, providing a reliable description of the ISE observed in BaF2. Our reports provide valuable insights into the anisotropic mechanical characteristics of BaF2 materials and serve as a theoretical guide for the ultra-precision machining of BaF2.