This paper investigates the elastic scattering by unbounded deterministic and random rough surfaces, both of which are assumed to be graphs of Lipschitz continuous functions. For the deterministic case, an a priori bound explicitly dependent on frequencies is derived by the variational approach. For the scattering by random rough surfaces with a random source, well-posedness of the corresponding variation problem is proved. Moreover, a similar bound with explicit dependence on frequencies for the random case is also established based upon the deterministic result, Pettis measurability theorem and Bochner's integrability theorem.