The use of textile reinforcements for polymer composite components has become a common practice due to the favourable material costs and labour requirements compared with traditional unidirectional prepreg composites, and the high stiffness and strength compared with the use of randomly orientated reinforcements. As a result, determination of both elastic properties and failure behaviour of textile composites has been the subject of substantial research in recent years. This paper presents a review of some of the analytical and numerical models pertaining to the mechanics of textile composites which have been published in the literature. Particular consideration is given to the suitability of models for the analysis of nonorthogonal weave structures such as those which have been deformed in shear during component manufacture. The intention of the paper is not to provide a detailed analysis of the underlying mathematics of the models discussed, but rather to provide an overview of the work conducted in order to direct further reading.