Carbon is an element that controls planetary habitability, and is fundamental for life on Earth. Its behaviour has important consequences for the global climate system, the origin and evolution of life on Earth. While the biosphere and atmosphere’s carbon cycle only accounts for less than 1% of the global carbon budget, hidden reservoirs of deep carbon in the Earth’s interior comprise the predominant storage of carbon on the planet. At the Earth’s surface, 60-70 % of carbon is hosted by carbonate minerals, which are then transported to the Earth’s interior, mainly in the form of sediments, by subduction of the oceanic lithosphere. Subducting plates are subjected to decarbonation, dehydration, and melting with CO2 release via supra-subduction volcanism. Nevertheless, part of the subducted carbonates’ may survive and be further transported to the deep mantle. Direct evidence of the existence of carbonates in the Earth’s interior, possibly reaching down to the lower mantle, comes from the finding of syngenetic inclusions of carbonates in diamonds and mantle xenoliths. The presence of carbonates in the deep Earth has a critical effect on the physical properties of the mantle. Melting and chemical speciation of the mantle are strongly affected by the form of C and carbonate stability. Therefore, the study of the stability and physical properties of carbonates at high pressures and temperatures is fundamental, because understanding the processes involved in the deep carbon cycle helps to improve our picture of the whole mantle. The systematic characterization of the elastic properties of carbonates as a function of their structure and chemical composition is of great importance because it may allow to identify their presence and distribution by seismology. Inverting seismic observations to successfully constrain the chemical composition and mineralogy of the Earth’s interior requires knowledge of the physical properties of all possible Earth’s materials at pressures and temperatures applicable to the Earth’s interior. Up to now, a multitude of studies has focused on the construction of phase diagrams and structural transitions by means of X-ray diffraction and vibrational spectroscopy experiments. Few studies are available on the complete elastic tensor of carbonates, however most of the datasets are not accompanied by an accurate characterization of the samples, which are often solid solutions and the exact chemical composition, density or the details about the experimental methods used are not presented. The aim of this thesis is to study the effect of chemical composition on the elastic properties of carbonates, providing a reliable dataset on the elasticity of the main carbonates. In particular, the elastic properties of crystalline aragonite, CaCO3, and Fe-dolomite, (Ca, Mg, Fe)(CO3)2, with different compositions were studied by Brillouin spectroscopy at ambient conditions. Brillouin spectroscopy was also used to investigate the elastic behaviour of amorphous calcium carbonate samples with different water contents (up to 18 wt%) at high pressures, up to 20 GPa. Furthermore, the importance of cationic substitution on the structure and high pressure behaviour of carbonates was investigated by studying a synthetic CaCO3-SrCO3 solid solution at ambient conditions and at high pressures, up to 10 GPa, by single crystal X-ray diffraction. Finally, the study of the effect of composition on the elastic properties of families of isostructural solids was also extended to a different class of materials, the metal guanidinium formates. The elasticity of a family of perovskite metal organic frameworks, metal guanidinium formates C(NH2)3MII(HCOO)3, with MII =Mn, Zn, Cu, Co, Cd and Ca was investigated by combining Brillouin spectroscopy, resonant ultrasound spectroscopy, density functional theory and thermal diffuse scattering analysis.