SUMMARYA theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half-space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth-order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed-boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary-layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half-space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response.