Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) outcomes due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, diabetes, chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health & disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 outcomes (with 71 mild, 61 moderate, and 27 severe patients) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multivariate regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid beta peptide, beta catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe elderly COVID-19 patients. Follow-up analysis using binomial regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies indicated a significantly increased likelihood of developing a severe COVID-19 phenotype, presenting a synergistic effect on worsening COVID-19 outcomes. These findings provide new key insights to explain why elderly patients less favorable outcomes have than young individuals, suggesting new associations of distinct autoantibody levels with disease severity.