1-bit communication is an effective method to scale up model training, and has been studied extensively on SGD. Its benefits, however, remain an open question on Adam-based model training (e.g. BERT and GPT). In this paper, we propose 0/1 Adam, which improves upon the state-of-the-art 1-bit Adam via two novel designs: (1) adaptive variance state freezing, which eliminates the requirement of running expensive full-precision communication at early stage of training; (2) 1-bit sync, which allows skipping communication rounds with bit-free synchronization over Adam's optimizer states, momentum and variance. In theory, we provide convergence analysis for 0/1 Adam on smooth non-convex objectives, and show the complexity bound is better than original Adam under certain conditions. On various benchmarks such as BERT-Base/Large pretraining and ImageNet, we demonstrate on up to 128 GPUs that 0/1 Adam is able to reduce up to 90% of data volume, 54% of communication rounds, and achieve up to 2× higher throughput compared to the state-of-the-art 1-bit Adam while enjoying the same statistical convergence speed and end-to-end model accuracy on GLUE dataset and ImageNet validation set.