2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) 2017
DOI: 10.1109/ropec.2017.8261630
|View full text |Cite
|
Sign up to set email alerts
|

Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
2

Year Published

2018
2018
2021
2021

Publication Types

Select...
4
2
1

Relationship

3
4

Authors

Journals

citations
Cited by 9 publications
(11 citation statements)
references
References 7 publications
0
9
0
2
Order By: Relevance
“…Over time, scholars have developed new proposals for forecasting electricity demand [12][13][14][15]. Actually, artificial intelligence (AI) techniques are preferred over others.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Over time, scholars have developed new proposals for forecasting electricity demand [12][13][14][15]. Actually, artificial intelligence (AI) techniques are preferred over others.…”
Section: Related Workmentioning
confidence: 99%
“…In this context, the authors have proposed a specific method to obtain patterns and detect anomalies in the electricity demand. K-means [34,35] a,c Image processing technology [36] Classification and outlier detection b,c Canonical variate analysis [25] K-means and support vector machines [21] Outlier Detection b Statistics and hierarchical clustering [24] Symbolic aggregate approximation process [26] a,b C-means based on fuzzy clustering [20] a,c Support vector machines and k-means [27] LSTM neural networks and statistics [28] [12,13] a,e Support vector regression [14] d,e Simple linear regression, multiple linear regression, and ARIMA [37] b Data mining, unsupervised data clustering and bayesian network prediction [15] Energy Management a,b Hierarchical clustering [16] a Event-triggered-based distributed algorithm [38] a,e Formulation of a multiple knapsack problem and solve it through dynamic programming [39] b…”
Section: Related Workmentioning
confidence: 99%
“…The typical profiles of each cluster represent the usual demand of the installation, that is, a consumption pattern. Consumption patterns are useful in several areas, such as forecasting and predicting demand [25], energy management, efficiency policies implementation and energy intelligence, improving the supply of tariffs, etc.…”
Section: Obtaining Patternsmentioning
confidence: 99%
“…A lo largo del tiempo los investigadores han desarrollado nuevas propuestas para la predicción de la demanda de electricidad [13], [81]- [83], siendo las técnicas de inteligencia artificial las preferidas actualmente. Sin embargo, su aplicación acarrea ciertas dificultades, como por ejemplo las debilidades del tipo a, b, d y e identificadas previamente.…”
Section: Influencia Del Tratamiento De La Demanda De Electricidad Comunclassified
“…La revisión del estado del arte acerca de la predicción del consumo de electricidad realizada en el Capítulo 2, así como la experiencia adquirida por el propio autor en [108] indica que la demanda de electricidad puede asociarse a diferentes variables, tales como: la temperatura, precipitación, hora del día, mes, año, laboralidad, etc. Sin embargo, su utilización en sistemas de monitorización y vigilancia puede resultar poco práctica debido a su complejidad, elevado gasto computacional y el requerimiento de predicciones de las otras variables consideradas, lo cual también eleva la incertidumbre.…”
Section: Aplicación De La Metodología Saicc En La Predicción De La Deunclassified