This article presents a new reliability-based design optimization procedure for the vertical vibration issues raised by a modified electric vehicle using fourth-moment polynomial standard transformation method. First, the fourth-moment polynomial standard transformation method with polynomial chaos expansion is used to obtain the reliability index of uncertain constraints in the reliability-based design optimization which is highly precise and saves computing time compared with other common methods. Next, the half-car model with nonlinear suspension parameters for the modified electric vehicle is investigated, and the response surface methodology is adopted to approximate the complex and time-consuming vertical vibration calculation to the polynomial expressions, and the approximation is validated for reliability-based design optimization results within permissible error level. Then, reliability-based design optimization results under both deterministic and uncertain load parameters are shown and analyzed. Unlike the traditional vertical vibration optimization that only considers one or several sets of load parameters, which lacks versatility, this article presents the reliability-based design optimization with uncertain load parameters which is more suitable for engineering. The results show that the proposed reliability-based design optimization procedure is an effective and efficient way to solve vertical vibration optimization problems for the modified electric vehicle, and the optimization statistics, including the maximum probability interval, can provide references for other suspension dynamical optimization.