The electronic structure and self-polarization of P(VDF-TrFE) Langmuir-Blodgett nanofilms were analyzed under temperature-driven phase transitions, according to their thickness, composition, and structural conformation. Both thermo-stimulated exoelectron emission (TSEE) spectroscopy and computational simulation, including quantum-chemical calculations from first principles, were carried out. PVDF and composite P(VDF-TrFE) (70:30) molecular chains as Trans and Gauche conformers, as well as crystal cells, were modeled for these TSEE analyses. The quantum-chemical calculations and the computational simulation were based on the density functional theory (DFT) as well as semi-empirical (PM3) methods. It was demonstrated that the energy of electron states, as well as the total energies of the studied P(VDF-TrFE) molecular clusters during phase transformation, is influenced by electron work function and electron affinity. Analysis was performed by combining TSEE experimental data with the computational data of the molecular models, demonstrating the effectiveness of this joint approach. For the first time, TSEE was used for contactless measurements of nanofilm polarization, and characterization of the phase transition. The proposed new method can be widely applied in nanobiomedicine, particularly in development of new bone bio-implants, including built-in sensors (new smart nanotechnology).