Advances in thin‐film fabrication are integral to enhancing the power of microelectronics while fabrication methods that allow the integration of biological molecules are enabling advances in bioelectronics. A thin‐film‐fabrication method that further extends the integration of biology with microelectronics by allowing living biological systems to be assembled, cultured, and analyzed on‐chip with the aid of localized electrical signals is described. Specifically, the blending of two stimuli‐responsive film‐forming polysaccharides for electroaddressing is reported. The first, alginate, can electrodeposit by undergoing a localized sol–gel transition in response to electrode‐imposed anodic signals. The second, agarose, can be co‐deposited with alginate and forms a gel upon a temperature reduction. Electrodeposition of this dual polysaccharide network is observed to be a simple, rapid, and spatially selective means for assembly. The bioprocessing capabilities are examined by co‐depositing a yeast clone engineered to display a variable lymphocyte receptor protein on the cell surface. Results demonstrate the in‐film expansion and induction of this cell population. Analysis of the cells' surface proteins is achieved by the electrophoretic delivery of immunoreagents into the film. These results demonstrate a simple and benign means to electroaddress hydrogel films for in‐film bioprocessing and immunoanalysis.