2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) 2019
DOI: 10.1109/icoei.2019.8862695
|View full text |Cite
|
Sign up to set email alerts
|

Electric Load Analysis and Forecasting Using Artificial Neural Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 10 publications
0
2
0
1
Order By: Relevance
“…Regarding the machine‐learning models, there are three models widely used for demand forecasting tasks, viz., DT [2, 33, 34], SVM [3, 3537] and artificial neural network (ANN) [3841]. DT is used to predict building energy demand levels [34] and analyse the electricity load level based on hourly observations of the electricity load and weather [33].…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Regarding the machine‐learning models, there are three models widely used for demand forecasting tasks, viz., DT [2, 33, 34], SVM [3, 3537] and artificial neural network (ANN) [3841]. DT is used to predict building energy demand levels [34] and analyse the electricity load level based on hourly observations of the electricity load and weather [33].…”
Section: Related Workmentioning
confidence: 99%
“…Recently, researchers take the advantage of LSTM to forecast building energy load using historical consumption data [40]. Historical load data and ambient temperature are utilised to build a prediction model based on ANN in [41]. Cheng et al [42] further manage to feed the concatenation of historical data and influence features as a sequential input to the LSTM network.…”
Section: Related Workmentioning
confidence: 99%
“…Классические методы являются наиболее распространенными [5], к которым относятся аналитические, статистические и экспертные методы [7]. В настоящее время машинное обучение и искусственный интеллект сильно развиваются, основными видами машинного обучения в задачах прогнозирования электропотребления являются метод опорных векторов [8], нечеткая логика [9], нейронные сети [10,11] и ансамблемые модели [11,12].…”
Section: Introductionunclassified
“…To date, a number of different approaches to short-term forecasting have been proposed, starting from regression methods [12,13] and ending with machine learning approaches based on neural networks [8,14,15] and hybrid or analog forecasting methods [16,17]. A significant part of modern publications devoted to this problem are focused on the development and improvement of new information technologies for predicting time series, such as neural, fuzzy networks, genetic algorithms, etc.…”
mentioning
confidence: 99%