Electric mobility has become an essential part of the future of transportation. Detection, diagnosis and prognosis of fault in electric drives are improving the reliability, of electric vehicles (EV). Permanent magnet synchronous motor (PMSM) drives are used in a large variety of applications due to their dynamic performances, higher power density and higher efficiency. In this study, health monitoring and prognosis of PMSM is developed by creating intelligent digital twin (i-DT) in MATLAB/ Simulink. An artificial neural network (ANN) and fuzzy logic are used for mapping inputs distance, time of travel of EV and outputs casing temperature, winding temperature, time to refill the bearing lubricant, percentage deterioration of magnetic flux to compute remaining useful life (RUL) of permanent magnet (PM). Health monitoring and prognosis of EV motor using i-DT is developed with two approaches. Firstly, in-house health monitoring and prognosis is developed to monitor the performance of the motor in-house. Secondly, Remote Health Monitoring and Prognosis Centre (RHMPC) is developed to monitor the performance of the motor remotely using cloud communication by the service provider of the EV. The simulation results prove that the RUL of PM and time to refill the bearing lubricant obtained by i-DT twins theoretical results.