THE PURPOSE. Assessment of the state of the art in the development of current limiters based on liquid metal self-healing fuses and an increase in the switching life of self-healing fuses with a composite fuse-link.METHODS. When solving the problem, the method of literature analysis was used, as well as the method for calculating dependencies for different materials of the fuse-link, the implemented method of scientific computer mathematics.RESULTS. Literary sources contain information about the designs of liquid-metal self-healing fuses and their research, allowing conclusions to be drawn about their viability and the possibility of obtaining a practical yield. A common disadvantage of the of liquid-metal self-healing fuses design is a limited switching resource due to an increase in the diameter of the fuse-link under the action of arc erosion. A significant effect of increasing the switching resource and the stability of the protective characteristic is possessed by the design of a of liquid-metal self-healing fuses with a composite fusible link. However, in such designs, the switching capacity is reduced. It is shown that the main criterion for the operability of the liquid-metal self-healing fuses with a composite fusible link is the value of the ratio between the value of the shunting resistance and the resistance of the electric ARC. The performance of the liquid-metal self-healing fuses with a composite fusible link is ensured at values of this value below critical.CONCLUSION. The proposed mathematical expression may turn out to be useful in the development of liquid-metal self-healing fuses with a composite fusible link design, for example, when choosing an electrode material, liquid metal, etc. This will significantly increase the switching resource of the liquid-metal self-healing fuses with a composite fusible link. The condition must be taken into account in the parametric synthesis of the current limiter based on the liquid-metal self-healing fuses with a composite fusible link.