The paper discusses the mechanisms by which inorganic fillers in silicone rubber dielectrics enhance the properties of thermal conductivity, relative permittivity, and electrical conductivity making them useful in outdoor high voltage insulation applications. The addition of alumina tri-hydrate or silica fillers to silicone elastomers, forming binary composites with enhanced thermal conductivity, is discussed in relation to filler type, particle size, shape, and concentration, and its use as a housing material for non-ceramic insulators to minimize material erosion at dry band arcing sites by lowering hot spot temperature. Also discussed is the enhanced relative permittivity of silicone dielectrics that is obtained through the addition of barium titanate powder which can be further increased with the addition of aluminium powder forming a tertiary composite, resulting in a significant grading of the surface electric field when applied as a housing material to high voltage bushings. Controlled electrical conductivity of silicone dielectrics is discussed through the use of antimonydoped tin oxide filler binary composites and when applied as a housing material to outdoor bushings, the pollution performance is greatly enhanced.