Intramuscular electromyographic (EMG) signals are detected with needles or wires inserted into muscles. With respect to non-invasive techniques, intramuscular electromyography has high selectivity for individual motor unit action potentials and is thus used to measure motor unit activity. Decomposition of intramuscular signals into individual motor unit action potentials consists in detection and classification, usually followed by separation of superimposed action potentials. Although intramuscular EMG signal decomposition is the primary tool for physiological investigations of motor unit properties, it is rarely applied in clinical routine, because of the need for human interaction and the difficulty in interpreting the quantitative data provided by EMG signal decomposition to support clinical decisions. The current clinical use of intramuscular EMG signals relates to the diagnosis of myopathies, of diseases of the α-motor neuron and of the neuromuscular junction through the analysis of the interference signal or of the shape of some motor unit action potentials, usually without a full decomposition of the signal.