In this paper, the dynamics and flow behaviour of an atmospheric argon plasma jet was studied in the new nozzle structure similar to the surface dielectric barrier discharge (SDBD) using the Schlieren imaging method. The effect of plasma jet driven by repetitive high-voltage microsecond pulses with low-frequency sinusoidal bias was measured qualitatively in a single mirror Schlieren optical system. The enhancement of plasma jet length and cross-section of plasma jet with surface in this condition is due to highly turbulent flow of argon plasma jet in this structure. This study revealed the important role of SDBD structure and modulated electric field on the behaviour of plasma jet in a high diameter nozzle. In practice, this technique allows us to increase the jet length of the nozzle output to 5 cm and under these conditions, the diameter of the plasma jet cross-section is increased to 8 mm, without increasing the electrical power consumption. Eventually, the hydrophilicity of the surface is also measured by the contact angle of a water droplet that decreases from 78 • to 8 • after surface treatment, implying we were able to reach a super-hydrophilic surface with this plasma jet structure. K E Y W O R D S hydrophilicity, modulated electric field, plasma jet, Schlieren imaging, surface dielectric barrier discharge (SDBD)