The luminescent properties of zinc oxide (ZnO) and nanostructured porous silicon (PSi) make these materials very appealing for photoemission applications. The current study reports on the fabrication of a composite of ZnO and nanostructured porous silicon micropatterns (ZnO + PSi micropatterns) onto heavily-doped silicon surfaces. The proposed composite micropattern is devoted to the future development of light-emitting diodes. The fabrication of the ZnO + PSi micropatterns was carried out in a two–step process. (1) A regular hexagonal micropattern of a photoresist/ZnO stack was fabricated by UV lithography on crystalline silicon substrates. (2) Before being lifted off the photoresist, nanostructured PSi micropatterns were fabricated by electrochemically etching the exposed areas of the silicon substrate. Subsequently, wet etching of the photoresist was carried out for the final development of the composite ZnO and PSi micropatterns. Further, thin films of ZnO and nanostructured PSi layers were characterized. In particular, their photoluminescent properties were analyzed, as well as their morphology and composition. The experimental PL results show that the ZnO layers have emission broadbands centered at (2.63 eV, blue), while the PSi layers show a band centered at (1.71 eV, red). Further, the emission peaks from the PSi layers can be tuned by changing their fabrication conditions. It was observed that the properties of the ZnO thin films are not influenced by either the surface morphology of PSi or by its PL emissions. Therefore, the PL properties of the composite ZnO + PSi micropatterns are equivalent to those featuring the addition of PSi layers and ZnO thin films. Accordingly, broadband optical emissions are expected to arise from a combination between the ZnO layer (blue band) and PSi (red band). Furthermore, the electrical losses associated with the PSi areas can be greatly reduced since ZnO is in contact with the Si surface. As a result, the proposed composite micropatterns might be attractive for many solid-state lighting applications, such as light-emitting diodes.