2020
DOI: 10.1016/j.egyr.2020.10.005
|View full text |Cite
|
Sign up to set email alerts
|

Electrical load prediction of healthcare buildings through single and ensemble learning

Abstract: Healthcare buildings are characterized by complex energy systems and high energy usage, therefore serving as the key areas for achieving energy conservation goals in the building sector. An accurate load prediction of hospital energy consumption is of paramount importance to a successful healthcare building energy management. In this study, eight machine learning models of single learning and ensemble learning were developed for predicting healthcare facilities’ energy consumption. To validate the performance … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 58 publications
(15 citation statements)
references
References 52 publications
0
12
0
3
Order By: Relevance
“…El EnPI desarrollado para la clínica no es complejo de calcular e implementar, por lo que puede ser manejado por el personal técnico, lo cual es esencial para el éxito del sistema de gestión. Comparado con otros estudios [6], [7], [9], [10], este es un enfoque más práctico y económico que no requiere la introducción de nuevas tecnologías.…”
Section: Discussionunclassified
See 2 more Smart Citations
“…El EnPI desarrollado para la clínica no es complejo de calcular e implementar, por lo que puede ser manejado por el personal técnico, lo cual es esencial para el éxito del sistema de gestión. Comparado con otros estudios [6], [7], [9], [10], este es un enfoque más práctico y económico que no requiere la introducción de nuevas tecnologías.…”
Section: Discussionunclassified
“…Los indicadores de desempeño se seleccionarán en función de la correlación adecuada entre parámetros de operación. La predicción precisa del consumo energético es esencial para una gestión energética efectiva en edificaciones hospitalarias [7]. En la gestión energética se consideran que correlaciones de R 2 > 0.6 pueden utilizarse como indicadores potenciales, mientras que correlaciones R 2 > 0.8 son indicadores potenciales fuertes [15], [17]- [20].…”
Section: Metodologíaunclassified
See 1 more Smart Citation
“…The error term is then constrained by a specified margin ε (epsilon). SVR is frequently used for STLF with the linear [25] or radial basis function (RBF) kernel [66], identifying load patterns better than other linear models [67].…”
Section: Modelingmentioning
confidence: 99%
“…Almost all techniques of statistical learning, both supervised and unsupervised, have been employed in building energy consumption diagnostics, as well as ensemble learning methods, employing multiple learning algorithms simultaneously [ 43 , 44 ]. Numerous researches have also been carried out on building energy consumption prediction, which could also be utilized for diagnostic purposes with minimal modifications [ 44 ].…”
Section: Literature Reviewmentioning
confidence: 99%