ACKNOWLEDGEMENTSWe thank Steve Selkowitz, Christian Kohler, and Rueben Mendelsberg (all LBNL) for insightful discussions. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the American Reconstruction and Reinvestment Act, under contract DE-EE0003838.
DISCLAIMERThis document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.2 Abstract Tungsten-oxide-based electrochromic (EC) windows are currently the most robust and matured dynamic windows where the transmittance of visual light and near-infrared radiation can be controlled by a small applied voltage. In its standard application, the window is commonly either in its clear or colored state. In this contribution, we study the optical and energy performance of such window in the fully bleached and fully colored state as well as when it is kept in intermediate states. Different configurations in terms of placement of the EC layer stack and possible additional low-emissivity (low-E) coating within the insulated glass unit are considered. Using optical data and software tools we find that even a small coloration has a significant effect on the energy performance because the solar heat gain coefficient is readily reduced by the absorption of the EC layer stack. We compare the performance of the EC windows to commercially available solar-control (spectrally selective) low-E windows.