Bismuth (Bi) combinations have been utilized for the treatment of bacterial infections. In addition, these metal compounds are most frequently utilized for treating gastrointestinal diseases. Usually, Bi is found as bismuthinite (Bi sulfide), bismite (Bi oxide), and bismuthite (Bi carbonate). Newly, Bi nanoparticles (BiNP) were produced for CT imaging or photothermal treatment and nanocarriers for medicine transfer. Further benefits, such as increased biocompatibility and specific surface area, are also seen in regular-size BiNPs. Low toxicity and ecologically favorable attributes have generated interest in BiNPs for biomedical approaches. Moreover, BiNPs offer an option for treating multidrug-resistant (MDR) bacteria because they communicate directly with the bacterial cell wall, induce adaptive and inherent immune reactions, generate reactive oxygen compounds, limit biofilm production, and stimulate intracellular impacts. In addition, BiNPs in amalgamation with X-ray therapy as well as have the capability to treat MDR bacteria. BiNPs as photothermal agents can realize the actual antibacterial through continuous efforts of investigators in the near future. In this article, we summarized the properties of BiNPs, and different preparation methods, also reviewed the latest advances in the BiNPs’ performance and their therapeutic effects on various bacterial infections, such as
Helicobacter pylori
,
Staphylococcus aureus
,
Pseudomonas aeruginosa
, and
Escherichia coli
.
Graphical abstract: BiNPs are antibacterial and ideal photothermal agents to inhibit various bacterial infections