2020
DOI: 10.1080/15567249.2020.1845252
|View full text |Cite
|
Sign up to set email alerts
|

Electricity market clearing algorithms: A case study of the Bulgarian power system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 27 publications
0
1
0
Order By: Relevance
“…Compared with SVM, AdaBoost algorithm belongs to supervised learning, and the output index has a clear classification label, which reduces the uncertainty of the system. In order to obtain higher power demand prediction accuracy, [23] compared the weak classifier weight-setting methods of static weight and dynamic weight. In order to improve the adaptability of the classifier, the weight is adjusted according to the similarity between the predicted output and the real output during each iteration.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Compared with SVM, AdaBoost algorithm belongs to supervised learning, and the output index has a clear classification label, which reduces the uncertainty of the system. In order to obtain higher power demand prediction accuracy, [23] compared the weak classifier weight-setting methods of static weight and dynamic weight. In order to improve the adaptability of the classifier, the weight is adjusted according to the similarity between the predicted output and the real output during each iteration.…”
Section: Literature Reviewmentioning
confidence: 99%