This study reveals the molecular regulation mechanisms of neurosecretory cell apoptosis in physiological and pathological (oncogene human epidermal growth factor receptor (HER)-2/Neu overexpression) aging. As we have shown previously, apoptosis level in hypothalamic neurosecretory centers increases in aging, and a low level of apoptosis in aged HER-2/Neu transgenic mice is associated with p53-dependent cascade suppression. In this chapter, we consider the participation of p53-regulating genes and p53 target genes in activation of this cascade during physiological aging, as well as suppression under HER-2/Neu overexpression. However, cell resistance to apoptosis may also be due to the activity of cytokine-dependent STAT-signaling pathway, including the high expression of survivin belonging to the family of inhibitors of apoptosis proteins (IAP). Also, another cytokine-dependent signaling, an extrinsic apoptosis pathway associated with the family of tumor necrosis factor (TNF) receptors, has been investigated. Thus, in the present work, three signaling cascades are considered: p53-dependent (the expression and interaction of apoptosis-associated proteins p53, WRN, pin1, p21, and caspase-3), STAT-mediated (STAT1, 3, 5, 6, and survivin), and TNF-dependent (CD95 (FAS), Fas-associated death domain (FADD), TNF receptor-associated death domain (TRADD), and caspase-8). These cascades are involved in both the activation of apoptosis and its suppression. This will reveal the general trends of regulation of neurosecretory cell apoptosis during aging.