The development of green and scalable syntheses for the preparation of size-and shape-controlled metal nanocrystals is of high interest in many areas, including catalysis, electrocatalysis, nanomedicine, and electronics. In this work, a new synthetic approach based on the synergistic action of physical parameters and reagents produces size-tunable octahedral Pt nanocrystals, without the use of catalyst-poisoning reagents and/or difficult-to-remove coatings. The synthesis requires sodium citrate, ascorbic acid, and fine control of the reduction rate in aqueous environment. Pt octahedral nanocrystals with particle size as low as 7 nm and highly developed {111} facets have been achieved, as demonstrated by transmission electron microscopy, X-ray diffraction, and electrochemical methods. The absence of sticky molecules together with the high quality of the surface renders these nanocrystals ideal candidates in electrocatalysis. Notably, 7 nm bismuth-decorated octahedral nanocrystals exhibit superior performance for the electro-oxidation of formic acid in terms of both specific and mass activities.