Sulfate-reducing bacteria (SRB) are one of the main reasons for the accelerated corrosion of steel. Cathodic polarization has been reported as an effective and economic method against marine corrosion, including microbiologically induced corrosion. However, the interaction between cathodic polarization and microbial activity has not been well defined. In this study, a fluorine-doped tin oxide electrode is used to study the effect of cathodic current on SRB cells. Fluorescence microscopy results clearly show that the attachment degree of SRB is dependent on the electric quantity and current intensity. The large electric quantity and high cathodic current (400 mA/m 2 × 30 h) can effectively inhibit bacterial attachment and subsequent biofilm formation. Furthermore, the effect of cathodic potential on the corrosion behavior of X65 steel in the presence of SRB is systematically investigated. Results show that the impressed charges, the increase of pH, and the formation of calcareous deposits on the electrode surface at the cathodic potential of −1,050 mV/SCE inhibit the attachment of SRB. In turn, the presence of SRB also interferes with the electrochemical reactions that occur during the polarization process, thus increasing the cathodic current. The interaction between SRB-induced corrosion and the process of preventing corrosion by various cathodic potentials is discussed.