The copper connectivity technique is essential for achieving electrical interconnection in wafer level packaging (WLP), system in packaging (SiP), and 3D packaging. The essential processing material for copper connectivity is a copper sulfate electroplating solution in which organic additives play a crucial role in the regularity of copper electrodeposition. In this study, electrochemical tests, X-ray diffraction, 3D profiling, and scanning electron microscopy were used to investigate the leveling effect and mechanism of polyquaternary ammonium urea-containing polymer (PUB2) in the process of copper electrodeposition on-chip copper connections. PUB2 has excellent polarization ability on the target surface, remains unaffected by the sulfur additive SPS and poly(ethylene glycol), and displays a strong ability to regulate the copper deposition rate of through-holes and surface wiring. The waviness of the wafer surface wiring was reduced from 130 to approximately 70 nm after optimizing the PUB2 concentration, and the surface roughness was reduced from 10 to approximately 7 nm. The coating was dispersed evenly, and the rate of through-hole filling was improved by 57%. This study not only examined PUB2 leveling performance and mechanisms but also devised a research method and system for electroplating additives to facilitate the development and application of new electroplating additives.