Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction Dopamine serves an essential function as a neurotransmitter, influencing the regulation of movement, cognitive processes, and emotional states. The identification of abnormal dopamine levels is critical for clinical diagnoses and scientific research, given its links to various disorders, including depression, schizophrenia, and Parkinson's disease. The distinctive electrochemical characteristics, stability, and broad bandgap of zinc sulfide (ZnS) nanostructures render them particularly fascinating. The hydrothermal method is recognized as an effective and economical approach for the fabrication of ZnS nanostructures, exhibiting a range of morphologies. Utilizing this method to create ZnS nanostructures leads to the formation of structures characterized by extensive surface areas, hierarchical designs, and improved electrochemical properties. Aim The objective is to examine the electrochemical characteristics of ZnS starfish-shaped nanostructures produced through the hydrothermal technique and to assess their viability as a sensing platform for dopamine detection. Materials and methods To synthesize ZnS nanoflowers, stoichiometric amounts of transition metal salts were prepared: 10 mM of Zn(NO 3 ) 2 •3H 2 O and 30 mM of sodium thiosulfate (Na 2 S 2 O 3 •5H 2 O) were dissolved in 30 mL of deionized water and stirred for 20 minutes. The solutions were then combined and transferred into a 100 mL Teflon autoclave reactor, which was heated at 200 °C for 12 hours in a furnace. This process utilized the hydrothermal technique to produce the desired ZnS nanoflowers. Result The crystalline arrangement of ZnS was validated by X-ray diffraction (XRD) analysis, aligning with the Joint Committee on Powder Diffraction Standards (JCPDS). Moreover, field emission scanning electron microscopy (FE-SEM) illustrated the particle morphology of ZnS, showing a range between 200 and 500 nm size. Additionally, the cyclic voltammetry results indicated that the modified electrode produced a greater current response than the bare electrode, highlighting its improved sensitivity to dopamine molecules. Conclusion ZnS nanoparticles were synthesized via a hydrothermal method and characterized using XRD and FE-SEM. These nanoparticles were used for electrochemical dopamine detection, showing potential for advanced sensing platforms. Integrating ZnS into microfluidic devices enables real-time dopamine monitoring, opening new possibilities for healthcare and neurochemical research. Exploring surface engineering techniques could further enhance the electrochemical performance of ZnS-based sensors.
Introduction Dopamine serves an essential function as a neurotransmitter, influencing the regulation of movement, cognitive processes, and emotional states. The identification of abnormal dopamine levels is critical for clinical diagnoses and scientific research, given its links to various disorders, including depression, schizophrenia, and Parkinson's disease. The distinctive electrochemical characteristics, stability, and broad bandgap of zinc sulfide (ZnS) nanostructures render them particularly fascinating. The hydrothermal method is recognized as an effective and economical approach for the fabrication of ZnS nanostructures, exhibiting a range of morphologies. Utilizing this method to create ZnS nanostructures leads to the formation of structures characterized by extensive surface areas, hierarchical designs, and improved electrochemical properties. Aim The objective is to examine the electrochemical characteristics of ZnS starfish-shaped nanostructures produced through the hydrothermal technique and to assess their viability as a sensing platform for dopamine detection. Materials and methods To synthesize ZnS nanoflowers, stoichiometric amounts of transition metal salts were prepared: 10 mM of Zn(NO 3 ) 2 •3H 2 O and 30 mM of sodium thiosulfate (Na 2 S 2 O 3 •5H 2 O) were dissolved in 30 mL of deionized water and stirred for 20 minutes. The solutions were then combined and transferred into a 100 mL Teflon autoclave reactor, which was heated at 200 °C for 12 hours in a furnace. This process utilized the hydrothermal technique to produce the desired ZnS nanoflowers. Result The crystalline arrangement of ZnS was validated by X-ray diffraction (XRD) analysis, aligning with the Joint Committee on Powder Diffraction Standards (JCPDS). Moreover, field emission scanning electron microscopy (FE-SEM) illustrated the particle morphology of ZnS, showing a range between 200 and 500 nm size. Additionally, the cyclic voltammetry results indicated that the modified electrode produced a greater current response than the bare electrode, highlighting its improved sensitivity to dopamine molecules. Conclusion ZnS nanoparticles were synthesized via a hydrothermal method and characterized using XRD and FE-SEM. These nanoparticles were used for electrochemical dopamine detection, showing potential for advanced sensing platforms. Integrating ZnS into microfluidic devices enables real-time dopamine monitoring, opening new possibilities for healthcare and neurochemical research. Exploring surface engineering techniques could further enhance the electrochemical performance of ZnS-based sensors.
Background Environmental contamination resulting from the release of untreated industrial wastewater has emerged as a critical worldwide issue. These effluents frequently have high levels of heavy metals and antibiotics, which are bad for aquatic ecosystems and human health. Oftentimes, conventional wastewater treatment techniques fall short of effectively eliminating these pollutants. Innovative materials that may efficiently absorb or break down contaminants from contaminated water sources are, therefore, desperately needed. Hydrothermally produced MXene cadmium sulfide (CdS) composites have shown great promise as an adsorbent material because of their special qualities, which include high surface area, chemical stability, and customizable surface functions that improve their adsorption capacity for heavy metals and antibiotics alike. Aim The aim of this study is to produce MXene-CdS nanoparticles in a cost-effective method for the simultaneous removal of heavy metals from aqueous contaminants for water pollution control. Methods and materials MXenes were synthesized by selectively etching Ti 3 AlC 2 MAX-phase ceramics using aqueous HF. CdS nanoparticles were synthesized separately and integrated with MXenes via a hydrothermal process. The resulting MXene CdS nanocomposites were characterized using scanning electron microscopy (SEM) for morphology, energy dispersion spectrum (EDS) for elemental composition, X-ray diffraction (XRD) study for phase identification, and removal of heavy metals via MXene CdS. Results Consistent distribution of CdS nanoparticles on the MXene surface and the creation of MXene CdS nanomembranes with a well-defined shape were observed by SEM analysis. Ti, C, Cd, and S elements, indiciaries of a successful composite formation, were confirmed to be present by EDS. The crystalline structure of both the MXene and CdS phases was confirmed by the distinctive peaks seen in the XRD patterns. MXene-CdS composites facilitate the effective removal of chromium ions from contaminated water. The excellent hydrophilicity of the produced nanomembrane allowed for effective interaction with watery contaminants. Conclusion This study showcases the successful synthesis and characterization of MXene-CdS nanocomposites for environmental remediation, particularly in removing toxic metals like chromium from industrial effluents. SEM analysis confirmed the uniform distribution of CdS nanoparticles on the MXene surface, while elemental composition validated their integration. XRD analysis confirmed the crystalline structures of both components. The nanocomposite exhibited excellent hydrophilicity, enhancing the efficient adsorption of heavy metals. Its large surface area and chemical stability contribute to high adsorption efficiency, making it ideal for wastewater treatment. The scalable synthesis process supports practical applications. This research highlights ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.