In an attempt to increase the stability and efficiency of hemin-modified electrodes, the present work reports the preparation of a new modified glassy carbon electrode obtained by immobilization of hemin (Hm) on the electrode surface together with a new N-substituted melamine (2,4,6-triamino-1,3,5-triazine) based G-2 dendrimer comprising paminophenol as peripheral unit (Den) or with one of its analogues, a melamine G-0 dimer (Dim). Basic structural features, able to determine intimate relationships between Hm and Dim (or Den) at room temperature in solid state, were evidenced with the use of vibrational analysis carried out by FT-IR. This method revealed contacts between Hm and Dim or Den respectively as H-bond interactions, proton-interchange, and π-π stacking interactions. The new modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy and tested for amperometric detection of H 2 O 2 . In this purpose, GC/Hm-Dim electrode exhibited better catalytic properties than GC/Hm-Den electrode, but lower stability.