In this study, DNA local structures with bulged bases and mismatched base pairs as well as ordinary full-matched base pairs by using (19)F NMR spectroscopy with (19)F-labeled oligodeoxynucleotides (ODNs) were monitored. The chemical shift change in the (19) F NMR spectra allowed discrimination of the DNA structures. Two types of ODNs possessing the bis(trifluoromethyl)benzene unit (F-unit) at specified uridines were prepared and hybridized with their complementary or noncomplementary strands to form matched, mismatched, or bulged duplexes. By using ODN F1, in which an F-unit was connected directly to a propargyl amine-substituted uridine, three local structures, that is, full-matched, G-U mismatch, and A-bulge could be analyzed, whereas other structures could not be discriminated. A molecular modeling study revealed that the F-unit in ODN F1 interacted little with the nucleobases and sugar backbone of the opposite strand because the linker length between the F-unit and the uridine base was too short. Therefore, the capacity of ODN F1 to discriminate the DNA local structures was limited. Thus, ODN F2 was designed to improve this system; aminobenzoic acid was inserted between the F-unit and uridine base so the F-unit could interact more closely with the opposite strand. Eventually, the G-bulge and T-U mismatch and the three aforementioned local structures could be discriminated by using ODN F2. In addition, the dissociation processes of these duplexes could be monitored concurrently by (19)F NMR spectroscopy.