2015
DOI: 10.2174/1573413711666141209234531
|View full text |Cite
|
Sign up to set email alerts
|

Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants Using Screen-printed Carbon Nanotubes Electrode

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…9 ). Further increase in pH of the DNA hybridisation medium, the arowana DNA biosensor response increased abruptly at pH 7.0, after which a sharp decline in DPV current was discernible as the pH environment changed to basic condition due to the irreversible denaturation of DNA in the higher pH range [ 23 , 24 , 31 – 33 ]. Since maximum DPV response was acquired at a neutral pH, the next electrochemical evaluation of arowana DNA biosensor response was maintained at pH 7.0 using 0.05 M of Na-phosphate buffer.…”
Section: Resultsmentioning
confidence: 99%
“…9 ). Further increase in pH of the DNA hybridisation medium, the arowana DNA biosensor response increased abruptly at pH 7.0, after which a sharp decline in DPV current was discernible as the pH environment changed to basic condition due to the irreversible denaturation of DNA in the higher pH range [ 23 , 24 , 31 – 33 ]. Since maximum DPV response was acquired at a neutral pH, the next electrochemical evaluation of arowana DNA biosensor response was maintained at pH 7.0 using 0.05 M of Na-phosphate buffer.…”
Section: Resultsmentioning
confidence: 99%