It has been reported that in chalcogenide-based electrochemical metallization (ECM) memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S), the metal filament grows from the cathode (e.g., Pt and W) towards the anode (e.g., Cu and Ag), whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2). The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.