Supercapacitive Swing Adsorption (SSA) modules with bipolar stacks having 2, 4, 8 and 12 electrode pairs made from BPL 4x6 activated carbon were constructed and tested for carbon dioxide capture applications. Tests were performed with simulated flue gas (15%CO2 /85%N2) at 2, 4, 8 and 12 V, respectively. Reversible adsorption with sorption capacities (~58 mmol·kg-1) and adsorption rates (~38 µmol·kg-1·s-1) were measured for all stacks. The productivity scales with the number cells in the module, and increases from 70 to 390 mmol.h-1m-2. Energy efficiency and the energy consumption improved with increasing number of electrodes from 67% to 84%, and 142 to 60 kJ·mol-1, respectively. Overall, the results show that SSA modules with bipolar electrodes can be scaled without reducing the adsorptive performance, and with improvement of energetic performance.