Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In response to the current policy of high storage capacity, two-dimensional (2D) materials have revealed promising prospects as high-performance electrode materials. MoB, as a type of such material, is widely regarded as an anode candidate for Liion batteries due to its large specific surface area and abundant ion diffusion channels; the long-term cycling stability, however, is poor owing to material pulverization during the cycle. Therefore, MoB/ Si 3 N 4 heterojunction in this work is proposed as an anode material, with Si 3 N 4 acting as a skeleton, maintaining the stability of the structure, while retaining the high energy storage properties of MoB as well. In addition, a certain built-in electric field is formed between them, which can play a role in regulating charge transfer, improving the ion transport channel, and accelerating the migration rate. Herein, the structural, electronic, and electrochemical properties are systematically investigated by first-principles calculations; the final results indicate that the heterojunction anode material does indeed have built-in electric fields, which promote the anode material to possess excellent electrical conductivity and outstanding electrochemical property. Meanwhile, the introduction of vacancy defects can bolster the diffusion kinetic performance of ion transport and greatly reduce the diffusion energy barrier of Li ions, which is conducive to the realization of rapid charge and discharge for the Li ion battery. Based on the synergistic effect of two single-component materials, the synthesized anode material displays a high theoretical capacity of 461 mAh/g, and the calculated open-circuit voltage is 0.66 V, within the range of the negative electrode criterion of 0−1 V, which can effectively play a role in preventing the formation of Li dendrites; these properties are comparable to other 2D anode materials as well. Given these intriguing properties, the MoB/Si 3 N 4 heterojunction is an exceptional candidate for advanced LIB high-performance anode materials.
In response to the current policy of high storage capacity, two-dimensional (2D) materials have revealed promising prospects as high-performance electrode materials. MoB, as a type of such material, is widely regarded as an anode candidate for Liion batteries due to its large specific surface area and abundant ion diffusion channels; the long-term cycling stability, however, is poor owing to material pulverization during the cycle. Therefore, MoB/ Si 3 N 4 heterojunction in this work is proposed as an anode material, with Si 3 N 4 acting as a skeleton, maintaining the stability of the structure, while retaining the high energy storage properties of MoB as well. In addition, a certain built-in electric field is formed between them, which can play a role in regulating charge transfer, improving the ion transport channel, and accelerating the migration rate. Herein, the structural, electronic, and electrochemical properties are systematically investigated by first-principles calculations; the final results indicate that the heterojunction anode material does indeed have built-in electric fields, which promote the anode material to possess excellent electrical conductivity and outstanding electrochemical property. Meanwhile, the introduction of vacancy defects can bolster the diffusion kinetic performance of ion transport and greatly reduce the diffusion energy barrier of Li ions, which is conducive to the realization of rapid charge and discharge for the Li ion battery. Based on the synergistic effect of two single-component materials, the synthesized anode material displays a high theoretical capacity of 461 mAh/g, and the calculated open-circuit voltage is 0.66 V, within the range of the negative electrode criterion of 0−1 V, which can effectively play a role in preventing the formation of Li dendrites; these properties are comparable to other 2D anode materials as well. Given these intriguing properties, the MoB/Si 3 N 4 heterojunction is an exceptional candidate for advanced LIB high-performance anode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.