Electrochemistry is a hotspot in today’s research arena. Many different domains have been extended for their role towards the Internet of Things, digital health, personalized nutrition, and/or wellness using electrochemistry. These advances have led to a substantial increase in the power and popularity of electroanalysis and its expansion into new phases and environments. The recent COVID-19 pandemic, which turned our lives upside down, has helped us to understand the need for miniaturized electrochemical diagnostic platforms. It also accelerated the role of mobile and wearable, implantable sensors as telehealth systems. The major principle behind these platforms is the role of electrochemical immunoassays, which help in overshadowing the classical gold standard methods (reverse transcriptase polymerase chain reaction) in terms of accuracy, time, manpower, and, most importantly, economics. Many research groups have endeavoured to use electrochemical and bio-electrochemical tools to overcome the limitations of classical assays (in terms of accuracy, accessibility, portability, and response time). This review mainly focuses on the electrochemical technologies used for immunosensing platforms, their fabrication requirements, mechanistic objectives, electrochemical techniques involved, and their subsequent output signal amplifications using a tagged and non-tagged system. The combination of various techniques (optical spectroscopy, Raman scattering, column chromatography, HPLC, and X-ray diffraction) has enabled the construction of high-performance electrodes. Later in the review, these combinations and their utilization will be explained in terms of their mechanistic platform along with chemical bonding and their role in signal output in the later part of article. Furthermore, the market study in terms of real prototypes will be elaborately discussed.