Bacterial infection and stress shielding are important issues in orthopedic implants. In this study, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-40Nb-10Ag alloy by spark plasma sintering (SPS). The microstructure, phase constitution, mechanical properties, microhardness, and antibacterial properties of the Ti-40Nb-10Ag sintered alloys with different sintering temperatures were systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tests, compressive tests, and antibacterial tests. The Ti-40Nb-10Ag alloys were mainly composed of α-Ti, β-Ti, and Ti2Ag intermetallic phases. This study shows that the change in sintering temperature affects the microstructure of the alloy, which results in changes in its microhardness, compressive strength, elastic modulus, and antibacterial properties. At the sintering temperature of 975 °C, good metallurgical bonding was developed on the surface of the alloy, which led to excellent microhardness, compressive strength, elastic modulus, and antibacterial ability with an antibacterial rate of 95.6%. In conclusion, the Ti-40Nb-10Ag alloy prepared by SPS at 975 °C is ideal and effective for orthopedic implant.