SummaryAnimal data show that neuropeptide systems in the dopamine-rich brain areas of the striatum (caudate, putamen, and nucleus accumbens) are influenced by exposure to psychostimulants, suggesting that neuropeptides are involved in mediating aspects of behavioral responses to drugs of abuse. To establish in an exploratory study whether levels of neuropeptides are altered in brain of human methamphetamine users, we measured tissue concentrations of dynorphin, metenkephalin, neuropeptide Y, neurotensin, and substance P in autopsied brains of 16 chronic methamphetamine users and 17 matched control subjects. As expected, levels of most neuropeptides were enriched in dopamine-linked brain regions such as the nucleus accumbens and striatum of normal human brain. In contrast to animal findings of increased neuropeptide levels following short-term methamphetamine exposure, striatal neuropeptide concentrations were either normal or moderately decreased in the methamphetamine users. In other examined dopamine-poor cortical and subcortical brain areas, neuropeptide levels were generally either normal or variably reduced. Although the neuropeptide differences might be explained by methamphetamine-induced damage to neuropeptidecontaining neurons, our human data are consistent with the possibility that, at least in the human striatum, long-term methamphetamine exposure leads to an adaptive process that is distinct from that which increases neuropeptide levels after acute methamphetamine exposure.