Membranes facilitate scalable and continuous lithium concentration from hypersaline salt lakes and battery leachates. Conventional nanofiltration (NF) membranes, however, exhibit poor monovalent selectivity in high‐salinity environments due to weakened exclusion mechanisms. This study examines polyamide NF membranes coated with polyelectrolytes enriched with ammonium groups to maintain high monovalent cation selectivity in hypersaline conditions. Over 8000 ion rejection measurements are recorded using salt lake brines and battery leachates. The experiments exemplify the coated membrane's ability to reduce magnesium concentrations to 0.14% from salt lakes and elevate lithium purity to 98% from battery leachates, in a single filtration stage. The membrane's selectivity is retained after 12 weeks in acidic conditions. Molecular dynamics analyses reveal that the ammonium groups create an electrostatic barrier at low pH, selectively hindering multivalent cation transport. This is corroborated by the Coulombic attraction between cations and carboxylate groups, along with a repulsive barrier from ammonium groups. Despite a 14.7% increase in specific energy, a two‐stage NF system using the coated membranes for lithium recovery significantly reduces permeate magnesium composition to 0.031% from Chilean salt lake brines. For NMC leachates, the coated membranes achieve permeate lithium purity exceeding 99.5%, yielding enhanced permeate quality with minor increases in energy demands.