In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles. Multi-cycle charge-controlled depositions were subsequently performed to evaluate the possibility of achieving tunable electrodeposition of nanostructured rhodium on n-doped silicon. The procedure increased surface coverage from 9% to 84%, with the average particle size diameter ranging from 57 nm to 168 nm, and with an equivalent thickness of the deposits up to 43.9 nm, varying the number of charge-controlled deposition cycles. The electrodeposition of rhodium on silicon presents numerous opportunities across various scientific and technological domains, driving innovation and enhancing the performance of devices and materials used in catalysis, electronics, solar cells, fuel cells, and sensing.