The X-ray excited Auger electron spectroscopy (XAES), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES) methods were applied in investigating samples of nanocrystalline diamond and highly oriented pyrolytic graphite of various C sp 2 /sp 3 ratios, crystallinity conditions and grain sizes. The composition at the surface was estimated from the XPS. The C sp 2 /sp 3 ratio was evaluated from the width of the XAES first derivative C KLL spectra and from fitting of XPS C 1s spectra into components. The pattern recognition (PR) method applied for analyzing the spectra line shapes exhibited high accuracy in distinguishing different carbon materials. The PR method was found to be a potentially useful approach for identification, especially important for technological applications in fields of materials engineering and for controlling the chemical reaction products during synthesis.