The mass-selective manipulation of ions at elevated pressure, including mass analysis, ion isolation, or excitation, is of great interest for the development of mass spectrometry instrumentation, particularly for systems in which ion traps are employed as mass analyzers or storage devices. While experimental exploration of high-pressure mass analysis is limited by various difficulties, such as ion detection or electrical discharge at high-pressure, theoretical methods have been developed in this work to study ion/neutral collision effects within quadrupole ion traps and to explore their performance at pressures up to 1 Torr. Ion trapping, isolation, excitation, and resonance ejection were investigated over a wide pressure range. The theoretically calculated data were compared with available experimental data for pressures up to 50 mTorr, allowing the prediction of ion trap performance at pressures more than 10 times higher. (J Am Soc Mass