2023
DOI: 10.3390/bs13090765
|View full text |Cite
|
Sign up to set email alerts
|

Electroencephalogram-Based Subject Matching Learning (ESML): A Deep Learning Framework on Electroencephalogram-Based Biometrics and Task Identification

Jin Xu,
Erqiang Zhou,
Zhen Qin
et al.

Abstract: An EEG signal (Electroencephalogram) is a bioelectric phenomenon reflecting human brain activities. In this paper, we propose a novel deep learning framework ESML (EEG-based Subject Matching Learning) using raw EEG signals to learn latent representations for EEG-based user identification and tack classification. ESML consists of two parts: one is the ESML1 model via an LSTM-based method for EEG-user linking, and one is the ESML2 model via a CNN-based method for EEG-task linking. The new model ESML is simple, b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2025
2025
2025
2025

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 68 publications
0
0
0
Order By: Relevance