Shell model calculations based on large basis has been conducted to study the nuclear structure of $^{20}Ne$, $^{22}Ne$ and $^{24}Mg$ nuclei. The energy levels, inelastic electron scattering form factors and transition probabilities are discussed by considering the contribution of configurations with high-energy beyond the model space of sd-shell model space which is denoted as the core polarization (CP) effects.~The Core polarization is considered by taking the excitations of nucleus from the $1s$ and $1p$ core orbits and also from the valence $2s$ $1d$ shell orbit in to higher shells with $4\hbar\omega$. The effective interactions $USDA$ and $USDB$ are employed with $sd$ shell model space to perform the calculation and the core polarization are calculated with $MSDI$ as residual interaction.~The calculated energy level schemes, form factors and transition probabilities were compared with the corresponding experimental data. The effect of core polarization is found very important for the calculation of $B(C2)$, $B(C4)$ and form factors, and gives excellent results in comparison with the experimental data without including any adjustable parameters.