2016
DOI: 10.1016/j.cageo.2016.03.006
|View full text |Cite
|
Sign up to set email alerts
|

Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 25 publications
(12 citation statements)
references
References 5 publications
0
11
0
1
Order By: Relevance
“…The last step is to assign lithologies to clusters to provide them meaningful electrofacies. This procedure is usually performed by either applying the lithologies of centroid to the whole cluster universally (Doveton, 2014) or assigning lithologies based on their corresponding logs and log interpretations (Roslin and Esterle, 2016). However, those two methods rely on 1) a relatively large number of clusters; and 2) distinct log values among clusters and thorough understanding of these log values.…”
Section: Step 3: Classificationmentioning
confidence: 99%
“…The last step is to assign lithologies to clusters to provide them meaningful electrofacies. This procedure is usually performed by either applying the lithologies of centroid to the whole cluster universally (Doveton, 2014) or assigning lithologies based on their corresponding logs and log interpretations (Roslin and Esterle, 2016). However, those two methods rely on 1) a relatively large number of clusters; and 2) distinct log values among clusters and thorough understanding of these log values.…”
Section: Step 3: Classificationmentioning
confidence: 99%
“…Metoda analisis log GR untuk mengetahui fasies pengendapan ini efektif digunakan untuk mengevaluasi lingkungan pengendapan serpihan yang kaya organik pada lingkungan transisi [6], serta terkait endapan sungai untuk mengetahui kontrol siklus pada fasies sedimentasi [7] [8]. Fasies sendiri diartikan sebagai aspek fisika, kimia atau biologi suatu endapan dalam kesamaan waktu [9].…”
Section: Pendahuluanunclassified
“…Empirical methods and traditional modelling techniques such as multivariate regression fail to derive the cause of backbreak in cases where it is affected by numerous parameters nonlinearly. Artificial intelligence has been diversely applied in earth sciences recently, using fuzzy logic (Demicco & Klir, 2004;Muhammad & Glass, 2011), neural networks (Bonaventura et al, 2017;Chatterjee et al, 2010;Izadi et al, 2017;Rogiers et al, 2012;Roslin & Esterle, 2016;Muhammad et al, 2014), and neuro-fuzzy modelling techniques (Cherkassky et al, 2006;Kar et al, 2014;Valdés & Bonham-Carter, 2006;Yegireddi & Uday Bhaskar, 2009;Yurdakul et al, 2014;Zoveidavianpoor et al, 2013). Recently, several researchers have solved backbreak problems through applying neural networks (Jang & Topal, 2013;Monjezi & Dehghani, 2008;Monjezi et al, 2013;Saadat et al, 2014;Sayadi et al, 2013;Ebrahimi et al, 2016), neuro-fuzzy techniques (Ghasemi et al, 2016), stochastic optimisation (Sari et al, 2013), and machine learning techniques (Khandelwal & Monjezi, 2012;Mohammadnejad et al, 2013).…”
Section: Introductionmentioning
confidence: 99%