In this paper, the effects of rotation on a Jeffery nanofluid flow in a porous medium which is heated from below is studied. Darcy model is employed for porous medium and the Jeffrey fluid model is used as a base fluid. The Navier-Stokes equations of motion of fluid are modified under the influence of the Jeffrey parameter, naoparticles and rotation. The basic perturbation technique based on normal modes is applied to derive the dispersion relation for a Rayleigh number. The effects of the Taylor number, Jeffrey parameter, Lewis number, modified diffusivity ratio, nanoparticles Rayleigh number and medium porosity on the stationary convection of the physical system have been analyzed analytically and graphically. It is observed that the rotation parameter has a stabilising influence for both bottom/top-heavy configurations.