The paper presents the results of research on nanocomposite nickel/graphene oxide (Ni / GO) coatings produced by electrochemical reduction method on a steel substrate. Discussed is the method of manufacturing composite coatings with nickel matrix and embedded graphene oxide flakes. For comparative purposes, the studies also included a nanocrystalline Ni coating without embedded graphene oxide flakes. Graphene oxide was characterized by Raman spectroscopy, infrared spectroscopy (FTIR) and transmission (TEM) and scanning (SEM) electron microscopy. Results of studies on the structure of nickel and composite Ni/GO coatings deposited in a bath containing different amount of graphene oxide are presented. The coatings were characterized by scanning electron microscopy, light microscopy, Raman spectroscopy and X-ray diffraction. The adhesion of the prepared coatings to the substrate was examined by the scratch method. The microhardness of the coatings was measured using the Vickers method on perpendicular cross-sections to the surface. Corrosion tests of the coatings were investigated using the potentiodynamic method. The influence of graphene oxide on the structure and properties of composite coatings deposited from baths with different content of graphene oxide was determined.